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Abstract
  Breast Cancer (BC) is the leading cause of death among females. It has been documented that Akt isoforms 
and kRaS control the proliferative pathways in most cancer including BC. To address the issue of breast cancer signal-
ing through mRNA quantification along with proteins quantifications in Akt pathway by microbead assay. 
  A total of 42 specimens were selected from a pool of samples representing nearly all Bloom’s Richardson’s 
grades tissues (Normal, Hyperplasia, Ductal in situ Carcinoma, Grade I, Grade II and Grade III). No Grade IV sample 
was available. Total of 8 genes (Akt 1, Akt 2, Akt 3, p53, RCAS 1, Bcl 2, BclxL, and Mcl 1) and 11 proteins in PI3K 
/ Akt - mToR pathway were assayed simultaneously using microbead BioPlex™ assay. Results on quantification of 
RCAS 1 gene (Immune Evader) indicates its significance by increased quantities to help to evade the breast cancer cells 
to distant places to metastasize in the body. Data obtained on Akt isoforms (Akt 1, Akt 2, Akt 3) show that all three play 
significant role in the progression of breast cancer. Our data indicate that in advance grades (grade II and III) Akt 3 along 
with Akt 1 act as oncogenes. Here we propose that Akt1 and Akt 3 appear to be involved in cellular growth/proliferation 
and angiogenesis/invasion respectively. Bioinformatics modeling have shown that the conformation of Akt 3 differs 
from Akt 1 and Akt 2 in PH domain that interacts to surface membrane from inner side. 
  Based on our data, we conceived that roles of all three Akt isoforms in growth, hypertrophy, epithelial mes-
enchymal transition (EMT), adhesion, and metastasis been highlighted. As reported in other cancers, Akt 3 appears to 
be involved in the phosphorylation of VEGF and Integrin family proteins, thereby facilitating invasion and metastasis 
in the aggressive stages of breast cancer. We propose a model with dynamics of Akt and RCAS 1 for metastasis.

Introduction

 In this part of world (Pakistan), breast cancer is the sec-
ond most common cancer after lung cancer and is ranked first in 
women[1-4]. The current information indicates that breast cancer 
is most common in young women of Pakistan[5-9]. It has been 
substantiated that Akt and kRaS-MAPK are dominant prolifera-
tive pathways stimulated by activated Receptor Tyrosine kinase 
(RTK)[10,11]. Akt (also termed Protein Kinase B – PKB) works 
as double edged sword for cell survival as well as inhibitor of 
apoptosis[12,13]. It has been identified that Akt, especially Akt 1 
isoform is the principle oncogene[7]. More recently, three iso-
forms namely, Akt 1, Akt 2, Akt 3 have been reported[1,2]. The 
function of each isoform has yet to be fully substantiated. So far 
three corresponding Akt genes (Akt 1, Akt 2 and Akt 3) have been 
reported[14-17]. The differences in functional abnormalities ob-
served in Akt null mice suggest that all isoforms have physiolog-
ically diverse roles[18]. Characterization of Akt 1 (Ch 14q32.33), 
the prototype isoform, makes it the key signaling molecule in 
diverse cellular processes including muscle hypertrophy[19-21] and 
presented as a principle proliferative molecule in many types of 
cancer[22,23]. Akt 2 (Ch 19q13.2) in contrast to Akt 1, knockout 
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results in mild growth deficiency with severe diabetic phenotype 
(insulin resistance)[23,24]. The function of Akt 3 (Ch 1q44), a com-
paratively less explored isoform, is predominantly associated 
with brain growth and testes[20,25,26]. The Akt isoforms are ~480 
amino acids long protein with a large number of posttranslation-
al phosphorylation sites[10,27]. Initial records indicate that Akt 3 
is consistently detected in cancer tissues as compared to normal 
tissues. However, this remains controversial[28,29]. Furthermore, 
increase in quantities of RCAS 1 seems to be associated with 
release of Akt 3 from Golgi complex[30-32]. RCAS 1 is over ex-
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pressed in many patients suffering from breast carcinoma and 
its expression levels correlate with tumor grades as well, sug-
gesting that it may be involved in immune escape[31,33]. RCAS 
1 is also been implicated in regulatory functions with VEGF in 
ovarian cell line[34,35].
 Bcl 2 family genes / proteins maintain a critical balance 
between cell proliferation and apoptosis[36,37]. These antiapoptot-
ic proteins include Bcl 2, BclxL and Mcl 1. These proteins have 
a common hydrophobic groove formed by BH 1, BH 2 and BH 
3 domains[38-40]. Evidence is also available for the overexpres-
sion of some members of the Bcl 2 family in breast cancer[36,40]. 
The tumorigenic potential of these proteins has been well docu-
mented in animal models in which expression of Bcl 2 oncogene 
has been reported in a variety of tumors and in lymphomas[41,42]. 
High expression of Bcl 2 has been observed in Estrogen Recep-
tor (ER) and Progesterone Receptor (PR) positive breast can-
cer[43,44]. BclxL on the other hand is related to the invasion and 
metastasis of some solid tumors[40,45,46]. Mcl 1 is shown to be reg-
ulated by mToR complex for transcription and translation[47,48]. 
Significance of Mcl 1 expression has been studied in a number 
of tumor types. It is linked to poor patient prognosis and surviv-
al[49].
 The three isoforms have been studied in melano-
ma[14,50,51]. In melanoma there is sharp rise in Akt 3[52,53]. This as-
pect has, however, not been studied adequately in other cancers, 
including breast cancer. Addition to it, little information is avail-
able on the molecular pathogenesis of Akt 1, Akt 2 and Akt 3 in 
various grades of cancer. Literature doesn’t provide concurrent 
role of the three isoforms in breast cancer. Lack of this infor-
mation about the dynamics of Akt isoforms has prompted us to 
examine the amplification of Akt 1, Akt 2 and Akt 3 in normal, 
GradeI, Grade II and Grade III tissues supported by assay of 
11 phosphoproteins of Akt pathway. This will be first report on 
the dynamics of Akt isoforms and their associated substrates in 
Pakistani (Punjabi) population.

Materials and Methods

Specimen Collection and Processing
 Total of 42 breast cancer specimens in different Bloom 
Richardson’s grades[28] were collected from three major public 
and private hospitals of Lahore, Pakistan. The specimens were 
stored at – 40°C (Forma Scientific, USA) that includes Forma-
lin Fixed Paraffin Embedded (FFPE) tissue blocks and Formalin 
Fixed (FF) tissues. The tissues were grounded to powder form 
in thistle and mortar with liquid nitrogen (Fine Gas (Pvt) Ltd, 
Lahore). Materials were taken out when ever needed on crushed 
ice bucket (Zellegra Eismaschinen, Germany) for further pro-
cessing. 
 
RNA Isolation, cDNA, Primer Design and qPCR Quantifi-
cation
 Total RNA was extracted by LiCl – Urea method (3M 
LiCl, 6M Urea, 50 mM Tris (7.4), 1 mM EDTA Na2, 0.5% Sarko-
syl (Serva, Germany) to preweighed tissue specimen (40-60 mg)
[54]. Total of 15 – 20 µL of 10% SDS was added to LiCl – Urea 
reagent to enhance homogenization with Micropestle (Bel Air 
Products, USA) two times for 5 minutes each. Total RNA was 
extracted from cells treated with Proteinase K (Vivantis, Malay-

sia) in PK buffer (10 mM Tris (8.0), 2 mM EDTANa2 (8.0), 200 
mM NaCl, 0.5% SDS and 200 µg / mL Proteinase K (20 mg/mL) 
for 30 minutes at 37°C. Samples were Phenol – Chloroform – 
Isoamyl alcohol (PCI) extracted (25:24:1) (MP Bio, USA) twice 
and with chloroform (Merck, Germany) once[55]. The aqueous 
phase was precipitated with HPLC grade 2-Propanol (BDH, UK) 
over night at – 40°C[56]. A second precipitation was done with ½ 
volume Ammonium acetate (5 M) and 2.5 volume of molecular 
grade ethanol (Merck, Germany) after pellet been dissolved in 
100 µL of RNase free water. Sample was centrifuged (Sigma, 
Germany) at 17 kg for 20 minutes at 4°C, pallets washed with 
70% RNase free ethanol, air dried and then at 45°C for 10 min-
utes on heating block (T-box, Jena Analytika, Germany). 
 Pellets were dissolved in molecular grade water and 
RNA concentration was adjusted to 1 µg/µL (Jena Analytika, 
Germany) used for cDNA synthesis by setting up a RT reaction 
with Maxime™ RT Random Hexamer kit (Inron Biotechnol-
ogy, S. Korea) in 20 µL volumes. The RT PCR program was 
written on Thermocycler (BioRad C1000 with CFX96 detector, 
USA) with annealing temperature of primers at 16°C (10 min-
utes), 25°C (10 minutes), 37°C (40 minutes) and final elongation 
at 42°C for 20 minutes. Reaction was denatured at 95°C for 5 
minutes. Multiplex real time (rt) quantification were done with 
gene specific primers for Akt 1 (AlexaFluor 647), Akt 2 (JOE), 
Akt 3 (Cy 5), p53 (FAM) with GAPDH (ROX) as housekeeping 
normalization. Primers were designed from FASTA sequences 
uploaded on to either Light Upon eXtension (LUX™) primer 
design software; D – LUX primer design software (Invitrogen 
Corp., USA) or QuantPrime (Max Planck Institute, Germany). 
Labeled primers with fluorescent tags were synthesized from 
BioBasicInc, USA or IDT, USA. Primer sequences are given Ta-
ble 1 and Table 2. All qPCRs were done by using qMaster Mix 
with UDG (Invitrogen, USA). Total of 2 µL cDNA reaction, 400 
nmol of each fluorescent labeled primer were used in each 20 µL 
reactions. Amplification protocol was initiated with heating at 
52°C (2 minutes), denaturation at 95°C (10 minutes), cycle de-
naturation at 95°C (20 seconds), annealing at 58°C (30 seconds), 
and elongation at 72°C (30 seconds). The fluorescent signal was 
collected for 45 cycles. The CFX manager (BioRad, USA) was 
used to optimize the quantified data. Each quantification reac-
tion was done three times in separate experiments.

Micro Bead Milliplex MAP 11-plex Assay
 Akt / mToR Panel (Milliplex, USA) was selected for 
19 selected samples with traditional Bioplex / Luminexx MAP 
based platform to detect simultaneously multiple protein quan-
tities. Each sample was weighed ~50 mg in sterile, oven dried 
microfuge tube for protein isolation. Assay was run according 
to the manufacturer manual’s protocol provided with the Akt – 
mToR panel kit. Before the processing of each sample, tissue 
powder was washed in 0.5 mL ice cold TBS and to pellet 150 
µL ice cold 1X Milliplex MAP Lysis Buffer containing fresh-
ly prepared 1X protease inhibitors and 1X phospho inhibitors 
cocktails (Serva, Germany). Gently rock the lysate for 10 - 15 
minutes at 4°C. Remove particulate matter by high speed cen-
trifugation at 15k g. Aliquot clarified supernatant and store the 
lysate at –40°C. Lysate protein concentrations were determined 
by diluting 1:10 in PBS by Qubit™ (Invitrogen, USA) protein 
assay.
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Statistical Data Analysis 
 All genes and protein quantifications were statistically 
analyzed by SPSS 17 (SPSS, Inc. USA) using various tools in 
the software.

Bioinformatics Tools: Different bioinformatics tools were used 
to get 3D protein structures of different molecules which in-
cludes; Akt 1, Akt 2, Akt 3 by loading protein FASTA Sequences 
on to LOMETS software (http://zhanglab.ccmb.med.umich.edu/
LOMETS). The molecules were displayed by PyMol, Version 
1.3 (2010). 

Results

Physical features of isoforms
 In the Figure 1a that represents the conserved domains 
of the three isoforms. The same figure also shows the percentage 
of homology between three Akt isoforms. Pleckstrin Homolo-
gy (PH) domain has the highest homology percentage between 
the three isoforms[29]. The highest percentage of homology is 
observed between Akt 1 and Akt 3 (84%), followed by 80% be-
tween Akt 1 and Akt 2. There is only 76% homology between Akt 
2 and Akt 3. Variations in other domains have also been recorded 
(Figure 1a). 

The primary sequence was down loaded in FASTA format and protein 
alignment was done with MAFTT tool. Serine, threonine and tyrosine 
amino acids were highlighted with; S Serine T Threonine Y Tyrosine in 
the aligned amino acid sequence. The box represents a hyper variable 
region in the kinase-regulatory region where Y452 is identified as unique 
addition. These amino acids are labeled in the LOMETS 3D prediction 
software. All 3D data is visualized in PyMol. The highlighted box rep-
resents the variable region in regulatory linker region of the three Akt 
isoforms  

Figure 1a: Clustal format | Fasta format | MAFFT result.

 Figure 1b shows the amino acid alignment of three iso-
forms (www.ncbi.org). It has been observed that there are major 
variations in amino acid sequences of the three isoforms that 

reside in their regulatory domain. Figure 2 shows the compari-
son of tertiary structure of three isoforms (http://zhanglab.ccmb.
med.umich.edu/LOMETS). It may be seen, as expected from the 
major homologies between three isoforms that there is very little 
difference in their tertiary structure. Akt 3, however, shows an 
open loop in which Y452 is available for phosphorylation. The 
significance of this difference is discussed elsewhere in this re-
port. It is now known that PIP 3 mediated phosphorylation of 
Akts by PDK 1 in kinase domains of Akt 1 - T308, Akt 2 - T306, 
and Akt 3 - T305 and by PDK 2 in the regulatory domains of Akt 
1–S472, Akt 2–S478, and Akt 3–S474 [57]. It is also known that the 
phosphorylated isoforms are negatively regulated by PHiLPP1 
and PHLiPP2. Phosphorylated threonine in the catalytic domain 
in each isoform is deregulated by SHiPs[58-60]. In figure 3 (a, b, 
c, d) are recorded results of amplification of Akt isoforms in the 
normal, Grade I, Grade II, and Grade III tissues of breast cancer. 
It may be noted that Akt 3 is conspicuously absent in the normal 
tissue while Akt 1 and Akt 2 show normal values though Akt 2 is 
higher than Akt 1. Progressively Akt 1 shows significant increase 
through Grade I, Grade II and Grade III. There is eye-catching-
difference in Akt 1 in grade I and Grade III. Akt 3 shows highly 
significant increase in Grade III compared to Grade I and Grade 
II. It shows elevation from the normal in Grade I and Grade III. 
The dynamics of three isoforms obtained in the study indicate 
that there is a considerable variation in three isoforms during the 
early and later stages in breast cancer tissue. A few samples of 
DISC and hyperplasia were also examined (data not shown in 
this report). From the data obtained on Akt isoforms the possi-
ble conceived role of three isoforms is presented in figure 4. In 
normal tissue only Akt 1 and Akt 2 are present. However, in the 
progression of breast cancer, there is a major event of transfor-
mation of epithelial cells to mesenchymal cells. For this at least 
in breast cancer we have observed that all three isoforms play a 
positive role in this transformation. As the tumor progresses, fur-
ther invasive and metastasis stages, Akt 1 and Akt 3 seem to play 
dominant roles in metabolism, protein synthesis, proliferation, 
adhesion and growth[61,62].

 
  

 
  

 

Activation sites   Proposed model site   HIF activation site      Unique sites - Akt 3 

Figure 1b:  Structure and Akt isoform Domains. PH – Pleckstrin Ho-
mology Domain, KD – Kinase Domain, TM – Trans membrane region, 
HM – Hydrophobic Motif (Regulatory tail).
S –  Serine, T – Threonine, Y – Tyrosine  (Modified from Liao and 
Hung, 2010).

a
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b

c

d
Figure 2

Figure 3: The three Akt Isoforms are presented the 3D structures of 
Akt 1, Akt 2 and Akt 3. After downloading the sequence of each iso-
form from NCBI site, gene accession number NM_005163.2 (Akt 1), 
NM_001626.3 (Akt 2), NM_181690.1 (Akt3). This was done to iden-
tify the possible phosphorylation sites in each isoform (www.phosida.
org). It’s known that Akt 1, 2 and 3 are phosphorylated at threonine 
308, 307 and 305; at serine 474,475 and 472. These Threonine sites are 
phosphorylated by PDK 1. However serine sites are phosphorylated by 
mToR C2, PDK 2 and ILK. These sites as may be seen in the 3D struc-
ture are exposed at the surface and are available for phosphorylation 
by the respective enzymes. In Akt 3 however additional sites: Ser 413, Y 
452 is also available for phosphorylation in the regulatory domain. The 
possible significance of these two sites has not been reported.

Figure 4: The figure demonstrates the possible conceived role played 
by three isoforms of Akt that is Akt 1, Akt 2 and Akt 3. It may be seen 
that in Normal tissue only Akt 1 and Akt 2 are present. However, during 
the progression of breast cancer, there is a major event of transforma-
tion of epithelial cells to mesenchymal cells. For this at least in breast 
cancer we have observed that all three isoforms play a positive role in 
this transformation. As the tumor progresses further into invasive and 
metastasis stages Akt 1 and Akt 3 seem to play dominant roles in metab-
olism, protein synthesis, proliferation, adhesion and growth.

 Like the genes, 11 proteins associated with Akt-mToR 
pathway were estimated in normal and each grade of breast 
cancer tissues. The measurement of 11 phosphoproteins was 
simultaneously accomplished with Bioplex / Luminexx MAP 
based platform as described under materials and methods. The 
quantification was undertaken to find out whether these could 
serve as possible specific markers for various stages of breast 
cancer[63]. These proteins are mostly associated with metabolic 
requirements of proliferating cells. The estimated proteins in-
cluded Akt (S473), mToR (S2448), GSK3α (S21), GSK3β (S9), p70 
S6K (T412), RP S6 (S235/S236), IRS 1 (S312), PTEN (S380), TSC 2 
(S939), IR (Y1162/Y1163), and IGF 1R (Y1135 / Y1136).  The data ob-
tained are recorded in table 1. 

 Akt 3 

 Akt 2 

 Akt 1 

http://www.phosida.org
http://www.phosida.org
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Table 1: Table represents values of various proteins ng/mL in normal 
and different Grades of breast cancer tissue.
S.
No

Names of Proteins Nor-
mal

Hyper-
plasia

Grade 
I

Grade 
II

Grade 
III

1 pAkt (S473) 19.08 25.81 24.50 23.00 19.75
2 pmToR (S2448) 19.08 20.66 20.08 18.25 18.50
3 pGSK 3α (S21) 14.58 16.47 15.42 18.42 16.25
4 pGSK 3β (S9) 9.42 12.00 12.25 10.75 7.25
5 pp70S 6K (S412) 37.83 21.09 41.33 38.00 40.25
6 pRPS6 (S335/336) 17.67 18.97 21.50 35.75 14.00
7 pPTEN (S380) 281.08 291.78 294.17 278.58 281.25
8 pTSC2 (S939) 15.00 23.84 19.69 16.50 24.50
9 pIRS1 (S312) 8.24 12.81 10.75 11.58 12.00
10 pIR (Y1162/1163) 24.67 29.41 23.50 26.08 24.50
11 pIGF 1R (Y1135/1136) 10.58 11.72 15.58 12.75 13.00

 The dynamics of RCAS 1(Receptor associated Carci-
noma Antigen on SiSo cells) like Akt isoforms was assayed in 
normal Grade I, Grade II and Grade III breast cancer tissues. 
RCAS 1 is strong indicator of immune evasion[31,34]. In all grades 
the relative amplification compared to normal tissue has been 
observed: more so in Grade II and Grade III. This indicates pos-
itive role of it in immune evasion, especially in the aggressive 
tissue. There is no significant difference in the amplification of 
any antiapoptotic genes (Bcl 2, BclxL and Mcl 1). This indicates 
that anti apoptotic role of these proteins remain unchanged. High 
levels of any of these Bcl 2 family proteins in Grade I, Grade II 
and Grade III tissues can serve as a major marker in prognosis of 
breast cancer after chemotherapy. 

Disucssion

 In cancer, a large number of genes are known to be de-
regulated[64,66]. These include the genes of cellular proliferative 
RaS/MAPK pathway and survival Akt pathway[66]. Several lines 
of evidence suggest that hyperactivation of Akt signaling along 
with RaS transform normal cells to cancerous cells[67-69]. In view 
of these findings the present study was undertaken to obtain data 
on the dynamics of Akt isoforms and eleven proteins associated to 
Akt pathway in progression of breast cancer in various stages. In 
addition, three antiapoptotic genes namely Bcl 2, BclxL and Mcl 
1 were quantified to assess their contribution and role in cellular 
proliferation. The three isoforms of Akt have shown close simi-
larities in three dimensional structures as shown in figure 2. In 
spite of these similarities, specific functions have been assigned 
to each isoform especially in their modulations during the early 
and later stages of breast cancer[17,70]. Like others, we have also 
observed similar distribution of the three isoforms in normal, 
grade I, grade II and grade III breast cancer tissues. For instance, 
Akt 3 isoform is conspicuously absent in the normal tissue but 
is highly elevated in grade III tissues. This is in agreement with 
those reported by others[14,16,21,71-73]. Some recent reviews have 
discussed the functional specificity of Akt isoforms[2,74-75]. For 
instance, it has been suggested that Akt isoforms have relative 
importance in altered cells. It is substantiated that Akt 1 or Akt 
2 or Akt 3 deficient mice, though viable, yet they have several 
deficiencies[76,77]. Another study Akt 2 knockout mice exhibited 

disorder in glucose metabolism (diabetes)[78,79]. This is accom-
panied by insulin resistance[80]. In Akt 3 deficient mice the brain 
size is reduced[16,81,82]. It has also been reported that Akt 2 levels 
are higher in 25% of breast carcinoma[24,83]. Compared to this, 
Akt 3 isoform is highly elevated in advanced stages of melano-
ma[71,72,84]. Furthermore, high level of Akt 3 activity is demon-
strated in estrogen deficient breast cancer[35,85,86]. In essence, we 
have concluded from our data that differential constitutive el-
evation of Akt isoforms is responsible for initiation as well as 
progression of breast cancer as reported in other cancers. These 
results are in agreement with those reported by others[68,71,72,83].
 A closer examination of our data reveals a relative 
progressive increase in Akt1, Akt 2 and Akt 3 in various grades 
of breast cancer tissue. This has been summarized in Normal, 
Grades I,II and III tissues (Figure 3). It has been documented 
that Akt 1 is a major isoform involved in proliferation of cancer-
ous tissues[83,87,88]. Accordingly, the dominance of Akt 1 observed 
in this study is not surprising. This is further fortified by recent 
experimental evidence in which Akt 1 was down regulated by 
siRNA. This resulted in reduced proliferation[89,90]. In the same 
experiment, falls in the levels of Akt 1 resulted in reduced ex-
pression of Cyclin D1[85,91,92]. However, evidence to the contrary 
also exists. For instance, for purposes of proliferation, the role of 
Akt 2 cannot be minimized[79,87-95]. This was shown by enhancing 
the levels of Akt 2 in absence of Akt 1. In this case the prolif-
eration was restored to the original rate of growth. It has been 
demonstrated that both Akt 1 and Akt 2 were required for in vitro 
and in vivo growth of human colon cancer cell line HCT 116 and 
DLD 1[96].
 In view of our data which show high levels of Akt 1 
and Akt 3 and reduced levels of Akt 2 in aggressive Grade III 
tissue, we are inclined to interpret that these changes are relat-
ed to increase in mass and metastatic transformation which is 
characteristic of this stage[8]. In an excellent review by Sheng et 
al[15], it has been argued that metastasis must meet a minimum 
of nine requirements which include: relaxed proliferation, re-
duction in adhesion, a change in interaction with Extra Cellular 
Matrix (ECM), rapid turnover of altered fibroblasts, increase in 
the demand for nutrients and blood supply (angiogenesis), and 
focus of proliferation on metastatic sites followed by implanta-
tion[97,98]. It appears that in our case, based on quantitative gene 
analysis of 42 samples, the above conditions of metastasis are 
fulfilled primarily by Akt 1 and Akt 3 isoforms[99].          
 Though our data properly exhibits the dynamics of Akt 
isoforms in various grades of breast cancer tissue, yet it has to 
be explained whether in our case the increase of mRNA is due 
to; a) increased turnover of mRNA, b) genetic modifications, or 
c) gene amplification. It has been reported that genetic modifi-
cations are very rare in Akt[16]. Similarly, gene amplification of 
Akt has not been reported in breast cancer[20,100]. The differential 
elevation of mRNA of three isoforms leads to the conclusion that 
mRNA of each isoform is separately regulated. Furthermore, we 
have examined conformational differences in the three Akt iso-
forms using bioinformatics tools described under materials and 
methods. Interestingly enough, it has been reported that trans-
plantation of PH domain of Akt 2 onto Akt 1 didn’t restore the 
function of proliferation characteristic of Akt 1[76,94]. We were 
particularly interested in identifying differences in 3D structure 
of PH domain for each isoform along with its phosphorylation 
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sites[101,102]. 3D structures of the three isoforms, shown in figure 
2, have been constructed using LOMETS (http://zhanglab.ccmb.
med.umich.edu/LOMETS). It may be seen in Figure 2 that in 
addition to putative phosphorylation sites in the three isoforms, 
additional phosphorylation sites are available in Akt 3. The new 
sites of phosphorylation are S413 and Y452. Whether these sites 
are actually phosphorylated in the signaling process remains to 
be determined. It is interesting to note, as is evident from our 
data that in Grade III along with Akt 1 and Akt 3, kRaS is also 
elevated. This situation has been reported in literature in various 
types of cancer[35,103,104]. A model of Akt isoform dynamics has 
been reported earlier. The model is based on the modulation of 
only Akt 1 and Akt 2. In this report the model presents elevated 
Akt1 with depressed Akt 2. In EMT the situation is reversed and 
remains so in the metastatic stage[76,105]. In the data we are re-
porting in breast cancer patients in Pakistani females, we have 
observed the elevation of Akt 1 and Akt 3 in Grade III tissues. It 
is, however, important to point out that Akt 3 is not detected in 
the normal tissue (Figure 3). On these bases we can suggest that 
elevation in Akt 1 and Akt 3 in Grade III tissues can be taken as 
biomarkers for aggressive stages of breast cancer. This calls for 
use of specific inhibitors of these two Akt isoforms for the treat-
ment of cancer[27,106]. 
 In the Pakistani population we are reporting for the first 
time that Akt 3 isoform along with kRaS play a dominant role in 
the aggressive stage of breast cancer. It is also of interest that in 
this population Akt 2 is the first isoform to be elevated in hyper-
plasia. This is followed by elevation of Akt 1, Akt 2 and Akt 3 in 
subsequent stages (Figure 3 a, 3b, 3c).
 In view of the well-known immunosuppressive role 
of RCAS 1[33,107-109] we were interested to study modulations of 
RCAS 1 because of its relationship with Akt 3 in various grades 
of breast cancer tissue. It has been documented that in tumor 
cells RCAS 1 expression plays an important role in evading the 
cancer cells from the immune system surveillance. This pro-
motes progression, invasion and metastasis[27,34]. The antigen 
has been used as a prognostic marker in Normal, Hyperplasic 
and malignant uterine endometrium[3,109]. It has been identified 
as a possible factor in endocrine-immune interaction in breast 
cancer[33,110]. Elevated levels of this antigen have been reported 
in hepatocellular carcinoma[31], gastrointestinal tract, non-small 
cell lung carcinoma, gall bladder, breast, ovarian, endometrial 
and cervical cancers[33,111]. In our data presented in Figures 3f 
show the increase of RCAS 1 in Hyperplasia, Grade I, Grade II 
and Grade III tissues. This increase is directly related to high 
levels of Akt 3[84]. The antigen is also listed as EBAG 9 is known 
to bind estrogen receptor[112] thus activation of estrogen binding 
receptor. Gene suppression at transcription level and of immune 
system with MHC class 1 molecule on surface of tumor cells 
signifies various mechanisms that are in place in the cell[34,113]. In 
view of this information it appears that elevated levels of RCAS 
1 in company with Akt 3 promote immune cell evasion, pro-
motes survival, boost invasion and metastasis[108,114]. 
 Similar conclusion could also be drawn with references 
to the levels of anti-apoptotic genes: Bcl 2, BclxL and Mcl 1 
(Figures 3g, 3h, 3i). Our data also indicate that quantification 
of Bcl 2 family genes along with RCAS 1 could also be used as 
good prognostic markers as seen in prostate cancer[40,115,116]. Such 
a prognostic study must be accompanied by determining the lev-

els of Akt 3 and anti apoptotic genes in the same tissue. This re-
lationship of RCAS 1 with antiapoptotic genes and Akt 3 is being 
reported for the first time in Pakistani (Punjabi) population.   
 The proteins that were assayed for normal and different 
grades of breast cancer tissues are listed in table 1. Little infor-
mation is available about the modulations of Akt and its substrate 
proteins in various grades of breast cancer. In our hands pAkt, 
pGSK 3β, pTSC 2, pIRS 1 and pIR can be conveniently used as 
biomarkers for Grade I and Grade II. However, we propose that 
in Grade III, pTSC 2, pIRS 1 and pIGF 1R quantification may 
serve as useful biomarkers. The proteins which are depressed in 
this grade include pGSK 3β and pRPS6. Comparable analytical 
data on these proteins in breast cancer tissue on various grades 
is not available in literature and are being reported for the first 
time. This could promote the process of grading breast cancer 
combined with other pathological information on Bloom-Rich-
ardson system[28]. It is of great interest to note that simultaneous 
analysis of gene reported in this study along with protein analy-
sis could be of help in selecting future inhibitors for Akt and its 
substrates. The observation that levels of pAkt as well as pGSK 
3α, pTSC 2, pIRS 1 and pIGF 1R are lowest in normal tissues 
(Table 1) may be of help in comparing of these proteins with 
their levels in various grades of cancerous tissues. pPTEN does 
not show any variation in the normal tissue as compared to its 
values in all other grades of cancer. pPTEN in active form de-
phosphorylates the PIP 3K stimulated phosphorylation of inosi-
tol at carbon 3[117,118]. The sustained levels of pPTEN in all tissue 
grades indicate its ineffectiveness to dephosphorylate PIP 3. We 
are therefore; suggest that elevated PTEN in the normal tissue 
is a mutated form of this gene (Data not shown). This has been 
previously reported in several studies[58,63,119-121].
 The quantification of the proteins reported here, as ex-
pected, provided interesting information with regard to pIRS 
1and pIGF 1R. Insulin is the ligand for the two receptors. These 
two proteins are elevated in all grades of breast cancer tissue[122]. 
This is indicative of increased glucose metabolism (energy) as 
is required during growth, proliferation and metastasis[23]. It has 
been previously reported that GSK 3α and GSK 3β were upreg-
ulated in normal prostate and in other cancers[123]. However, in 
breast cancer GSK 3β increases in Grade I and both GSK 3α 
and GSK 3β increase in Grade II. This is again indicative of the 
availability of energy through glucose metabolism[67,68,124]. 
 We have estimated total mToR complex phosphory-
lated at S2448. mToR C2 phosphorylates Akt at S472 after its ac-
tivation by pRheb[79,106,110]. Other substrates of mToR complex 
include STAT3, S6K1 (p70), 4E-BP1 and ULK1/ATG13[94,125]. 
In this way it promotes growth, proliferation, survival, angio-
genesis and metabolic activities in various cancers[126,127]. Like 
others, we have observed increased levels of phospho p70 S6 ki-
nase and pRPS6. Alternatively, RPS6 is also phosphorylated by 
p90 (RSK). In that case it inhibits the selective transcription of 
various other genes[94,128] making significant changes in normal 
cell signaling cascades. This is more evident from phosphory-
lated RPS6 that promotes growth factors and tumor promoting 
agents[128].
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Conclusion 

 In essence, our genomic and proteomic data provide 
substantial evidence that Akt 1 and Akt 3 provide signals for pro-
liferation of tumor (size) and invasion – angiogenesis. Further-
more, the elevated levels of pIR, pIGF 1R, pIRS 1 in glucose 
metabolism accompanied by phosphorylation of GSK 3α and 
GSK 3β provide higher energy source for growth, survival, pro-
liferation and angiogenesis. The subtle dynamics of genes and 
proteins reported in this study may be of some help in selection 
of therapeutic molecules for breast cancer.
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